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NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Outline!

•  The fork-join model (a refresh)!
•  Nested parallelism!
•  OpenMP tasking!
-  Task execution model!
-  Data scoping!
-  Task synchronization!

•  Performance considerations!
•  Correctness issues!
•  Future OpenMP extensions!
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The Fork-Join Model!

•  Multiple threads are forked at a parallel construct!
-  The master thread is part of the new thread team!

•  Worksharing constructs distribute work in the parallel region!
-  for or do, sections, single!

•  Synchronization primitives synchronize threads!
-  barrier, critical, locks!

•  Threads join at the end of the parallel region and the master 
thread continues!
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Nested Parallelism!

•  Parallel regions can be nested inside another!
-  Exploiting parallelism at multiple nesting levels  

since single level may not be enough!

•  To enable nested parallel regions!
-  OMP_NESTED=true or call omp_set_nested(1)	
  
-  If not, the inner parallel region will be started with a team of one thread!

•  To set the number of threads!
-  Call omp_set_num_threads() or use the num_threads clause	
  
-  OMP_NUM_THREADS=2,3 (OpenMP 3.1)!
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#pragma omp parallel for num_threads(2) 
for (j=0; j<m; j++) { 
  #pragma omp parallel for num_threads(3) 
   for (i=0; i<n; i++) { 
      c[j][i] = a[j][i] + b[j][i]; 
   } 
} 

First level parallel 
region with 2 threads 

Second level parallel 
region with 3 threads 
for each outer thread 
with a total of 6 threads 
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Nested Parallelism (cont.)!

•  Issues with nested parallel regions!
-  Performance is a concern!

•  Overhead from fork and join !
•  Issue with data locality and data reuse!
•  Implicit barrier at the end of each inner parallel region!

-  Not all compilers (such as PGI compiler) provide the support!
•  The collapse clause for multiple loops (OpenMP 3.0)!
-  Combines closely nested loops into one!
-  More efficient than nested parallel regions!
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#pragma omp parallel for collapse(2) 
for (j=0; j<m; j++) { 
   for (i=0; i<n; i++) { 
      c[j][i] = a[j][i] + b[j][i]; 
   } 
} 

Combines both i and 
j loops 
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Tasking in OpenMP!

•  Limitation of the fork-join model with worksharing constructs!
-  Work units statically determined in worksharing constructs!

•  No easy method to dynamically generate work units!
-  Lack of support for recursive algorithms!

•  For example, no easy way to traverse a tree in parallel!

•  Tasking model!
-  Introduced in OpenMP 3.0!
-  Complimentary to the thread-centric model!
-  Ability to express parallelism for recursive algorithms, pointer chasing, 

which are commonly encountered in C/C++!
-  Constructs for task generation and task synchronization!
-  Concept of task switching!
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Basic Task Concept!

•  OpenMP task 
-  A code entity including control flow and its data environment, executed 

by a thread 

•  Implicit and explicit tasks 
-  Implicit tasks generated via the parallel directive 
-  Explicit tasks generated via the task directive 

•  Task synchronization 
-  The taskwait directive to wait for all child tasks of the current task 
-  Implicit or explicit barriers to wait for all explicit tasks 

•  Data environment is associated with tasks except for 
threadprivate storage 

•  Locks are owned by tasks 
-  Set by a task, unset by the same task 
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Task Execution Model!
•  Starts with the master thread 
•  Encounters a parallel construct 
-  Creates a team of threads, id 0 for the master 

thread 
-  Generates implicit tasks, one per thread 
-  Threads in the team executes implicit tasks 

•  Encounters a worksharing construct 
-  Distributes work among threads (or implicit 

tasks) 
•  Encounters a task construct 
-  Generates an explicit task 
-  Execution of the task could be deferred 

•  Execution of explicit tasks 
-  Threads execute tasks at a task scheduling point 

(such as task, taskwait, barrier) 
-  Thread may switch from one task to another task 

•  At the end of a parallel construct 
-  All tasks complete their execution 
-  Only the master thread continues afterwards 
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Thread versus Task!

•  Threading model!
-  Thread and work (or task) go together!
-  No concept of deferred execution!

•  Tasking model!
-  Task generation and task execution are separate!
-  There is no direct control on when a task gets executed!
-  Thread is an execution engine!
-  It is a more dynamic environment!

•  OpenMP supports both models!
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int main() 
{ 
  int res, n=45; 
  #pragma omp parallel 
  { 
    #pragma omp single 
     res = fib(n); 
  } 
  printf(“fib(%d)=%d\n”, 
          n,res); 
} 

Tasking Example: Fibonacci Number !
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int fib(int n) 
{ 
  int x, y; 
  if (n < 2) return n; 
   #pragma omp task shared(x) 
    x = fib(n-1); 
   #pragma omp task shared(y) 
    y = fib(n-2); 
   #pragma omp taskwait 
  return(x+y); 
} 

But don’t expect any performance from this version! 

Ensure calculations for x 
and y are done and storage 
does not disappear 

Explicit tasks with proper 
data sharing attributes 

Single thread generates 
tasks, but multiple 
threads execute tasks 

The code builds a binary task tree. Parallelism comes from 
the execution of tasks on the leaf nodes. 
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Data Sharing in Tasks!

•  Default sharing attribute rules!
-  Shared for implicit tasks!
-  For explicit tasks!

•  If a variable is determined to be  
shared in the parellel region,  
default is shared!

•  Otherwise, default is firstprivate  
(to avoid out-of-scope data access)!

•  Use data sharing clauses  
explicitly, in particular if you  
are not sure!
-  shared, private, firstprivate, etc.!
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node_t *node_head, *p; 
int n = 40; 
#pragma omp parallel private(p) 
{  
 #pragma omp master 
 { 
   p = node_head; 
   while (p) { 
      #pragma omp task 
       process(p,n); 
     p = p->next; 
   } 
 } 
 #pragma omp taskwait 
} 

“p” is private and 
“n” is shared in 
the parallel region 

“p” is firstprivate 
and “n” is shared 
for the task 

Example of pointer chasing 
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Common Problems in Using OpenMP!

•  Code is not scaling – possible issues:!
-  Overhead of OpenMP constructs!
-  Granularity of work units!
-  Remote data access and NUMA effect!
-  Load imbalance!
-  False sharing of cache!
-  Poor resource utilization!

•  Parallel code gives a slightly different result than the serial 
code!
-  Understanding parallel reduction!

•  Code crashes or gives different results from run to run!
-  Stack size limitation!
-  Data race!
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Overhead and Granularity!

•  Overhead from OpenMP constructs!
-  Fork-join of threads!
-  Barrier!
-  Creation and scheduling of tasks!
-  May be measured with the EPCC microbenchmarks!

•  Not enough granularity in work unit!
•  Possible solutions!
-  Increase work and exploit parallelism at coarser level!
-  Merge parallel regions if possible!
-  Avoid barrier if possible (e.g., with nowait clause)!
-  Use atomic over critical or reduction!
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Reducing Overhead!
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#pragma omp parallel for 
  for (i=0, i<n; i++) 
    a[i] = b[i] + c[i]; 
 
#pragma omp parallel for 
  for (i=0; i<n; i++) 
    d[i] = e[i] + f[i]; 
 

#pragma omp parallel 
{ #pragma omp for nowait 
   for (i=0; i<n; i++) 
     a[i] = b[i] + c[i]; 
  #pragma omp for nowait 
   for (i=0; i<n; i++) 
     d[i] = e[i] + f[i]; 
} 

Example 1 

for (i=0; i<m; i++){ 
 #pragma omp parallel for 
  for (j=0; j<n; j++) 
    a[i][j] += a[i-1][j]  
        + a[i+1][j]; 
} 

#pragma omp parallel private(i) 
for (i=0; i<m; i++){ 
  #pragma omp for 
   for (j=0; j<n; j++) 
     a[i][j] += a[i-1][j]  
         + a[i+1][j]; 
} 

Example 2 

-  Merge parallel regions 
-  Use nowait if no data dependence between worksharing regions 
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Fibonacci Number – Increased Granularity !
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Each task performs some amount 
of work! 

int fib(int n) 
{ 
  int x, y; 
  if (n < 2) return n; 
  if (n < 30) 
    return (fib(n-1)+fib(n-2)); 
   #pragma omp task shared(x) 
    x = fib(n-1); 
   #pragma omp task shared(y) 
    y = fib(n-2); 
   #pragma omp taskwait 
  return(x+y); 
} 
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EPCC Microbenchmark Results!
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-  Measure extra time spent (or overhead) by each OpenMP construct 
as a function of thread counts on the SGI Altix 

-  Intel OpenMP compiler was used 
-  Constructs such as parallel, reduction, barrier have very large 

overhead 
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Remote Data Access and NUMA Effect!

17 

Better 0

50

100

150

200

250

300

Ti
m

e 
 (s

ec
s)

2 4 8 16 32 64
Number of Threads

 First touch loop
 Data on one

   location
 Data distributed

   over locations
 Data distributed

   randomly

BT CLASS=B

0

100

200

300

400

500

8 16 32 64 128
Number of Threads

 First touch loop
 Data on one

   location
 Data distributed

   over locations
 Data distributed

   randomly

BT CLASS=C

-  Performance of BT from the NAS Parallel Benchmarks on the SGI Altix 
-  Four types of data layout based on how data are initially distributed 

-  Remote data access is more expensive!
•  May cause memory access bottleneck!

-  Possible solutions!
•  Use thread-local data (private or threadprivate) if possible!
•  Add the first touch loop!
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Other Performance Issues!

•  Load imbalance!
-  Try the dynamic loop schedule!
-  Increase iteration space by using the collapse clause for nested loops!

•  False sharing!
-  Caused by multiple threads updating data in the same cache line!
-  Work-around!

•  Pad array dimension of shared data!
•  Use private data if possible!

•  A good practice!
-  Use omp_get_wtime() to get timing profile for code sections in question!
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Thread-Processor Binding!

•  Or thread affinity!
-  May improve performance by reducing OS scheduling overhead and 

improving resource utilization!
-  Reduce run-to-run timing variation!
-  But no standard way currently to control the affinity setting!

•  For Intel compiler, set KMP_AFFINITY={scatter,compact..}!
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Thread Affinity Types!
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KMP_AFFINITY=compact	
  
better cache sharing 
between threads 

KMP_AFFINITY=scatter	
  
maximizing memory 
bandwidth utilization 

Examples of Intel Compiler, OMP_NUM_THREADS=8, two quad-core sockets 	
  

– “scatter” usually gives better results for most cases 
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For more details, see 
www.nas.nasa.gov/hecc/support/kb/60/ 
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Code Correctness Issues!

•  Parallel reduction!
-  May not be bit reproducible as the serial result!
-  Mathematically associative: (x + y) + z = x + (y + z), but machine 

accuracy is limited for floating point!
-  Use double precision over single precision for reduction variables!

•  Some common programming errors!
-  Incorrect variable scoping!
-  Accessing reduced variable without a barrier!
-  Master versus single!

•  Master doesn’t have a barrier, but single does!
-  Race condition!
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Race Condition!

•  Commonly encountered in shared memory programming!
-  Results are not deterministic!
-  Unintentional (programming error), intentional (one thread polling  

a flag that is updated by another thread)!
•  Occurs when all the following hold!
-  Multiple threads access the same memory location concurrently!
-  One of the access is write!
-  Access is not protected (e.g., by critical construct)!
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#pragma omp parallel private(tid) 
{ 
  tid = omp_get_thread_num(); 
  n = tid; 
} 

Data race on “n” 

Updating private 
variable “tid” is OK 

Updating shared variable “n” from multiple threads causes a race. 
Race condition should be avoided by all means. 
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Code Correctness Issues (cont.)!

•  Code crashes!
-  Caused by programming errors!

•  Debugging the code with a debugger (gdb, totalview, etc.)!
-  Runtime stack size limitation!

•  Default thread stack size can be easily exhausted!
•  Reset stack size for master threads via shell command!
limit	
  stacksize	
  unlimit	
  	
  (csh)!
ulimit	
  –s	
  unlimited	
  	
  	
  	
  	
  	
  (sh)!

•  Reset stack size for worker threads via environment variable!
setenv	
  OMP_STACKSIZE	
  12m	
  	
  (csh)!
export	
  OMP_STACKSIZE=12m	
  	
  (sh)!
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Software Tools!

•  Correctness checking!
-  Variable scoping!

•  “Auto” scoping supported by the Oracle OpenMP compiler!
-  Race condition detection!

•  Intel Thread Checker (or Parallel Inspector)!
•  Oracle Thread Analyzer!

•  Performance tools!
-  Compiler feedback!
-  Profiling tools!

•  ompP (UCB), PerfSuite (NCSA), Vtune (Intel), TAU (U.Oregon), etc.!

•  Parallelization assistant!
-  Compiler auto-parallelization!
-  Semi-automatic parallelization tools (CAPO/Parawise)!
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Future OpenMP Extensions!

•  Work in progress within the OpenMP language committee!
-  Public draft of the 4.0 specification by the end of the year!

•  New features under consideration!
-  User-defined reduction!
-  Error handling!

•  The cancel construct for parallel and worksharing!
•  Cancellation points!

-  Fortran 2003 support!
-  Thread affinity!

•  Logical processor units via the OMP_PLACES environment variable!
•  Affinity policy (compact, scatter, master) for threads in parallel regions!
•  Handling thread affinity in nested parallel regions!

-  Atomic construct for sequential consistency!
•  atomic seq_cst!

25 



NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host!

Support for Accelerator Devices!

•  Such as GPUs, Intel Xeon Phi (MIC)!
-  Many cores, large amount of parallelism!
-  Disjoint device memory from the host!

•  Programming models!
-  Low level models (CUDA, OpenCL) exist, but hard to use!
-  High level models are being developed!

•  OpenACC model (for GPUs)!
-  Based on the PGI Accelerator programming model, defined by multi-

vendors (www.openacc-standard.org)!
-  Using compiler directives, as in OpenMP!
-  Offloading work to the device!
-  Data transfer between the host and the device!
-  Intend to merge into OpenMP eventually!
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Summary!

•  OpenMP provides a programming model for shared memory 
systems!

•  Compilers with OpenMP support are widely available!
•  The tasking model opens up opportunities for a wider range of 

applications!
•  Several issues to consider for developing efficient OpenMP 

codes!
-  OpenMP overhead!
-  Data locality!
-  In some cases trade-off between easy of use and performance!

•  With some extra effort, scalability can be achieved in many cases!
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References!

•  OpenMP specifications!
-  www.openmp.org/wp/openmp-specifications/!

•  Resources!
-  www.openmp.org/wp/resources/!
-  www.compunity.org/!

•  Benchmarks!
-  OpenMP Microbenchmarks from EPCC  

(www.epcc.ed.ac.uk/research/openmpbench)!
-  NAS Parallel Benchmarks  

(www.nas.nasa.gov/publications/npb.html)!
•  Porting applications to Pleiades!
-  www.nas.nasa.gov/hecc/support/kb/52/!
-  www.nas.nasa.gov/hecc/support/kb/60/!
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